

Funded by the European Union. Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or the European Innovation Council
and SMEs Executive Agency (EISMEA). Neither the European Union nor the granting authority can be
held responsible for them. Swiss participants in this project are supported by the Swiss State
Secretariat for Education, Research and Innovation (SERI) under contract numbers 23.00332 and
23.00328.

HORIZON-EIC-2022-PATHFINDERCHALLENGES-01

Project No. 101115115

Interoperable end-to-end Platform of scalablE and sustainAble high-
thRoughput technoLogies for DNA-based digital data storage

Deliverable D1.1
PEARL-DNA compression codec

WP1 – Data preparation system

Authors Stephanie Kristin Schröder (LUH)

Lead participant LUH

Delivery date 30 September 2024

Dissemination level PU - Public

Type DEM – Demonstrator, pilot, prototype

Version 1.0

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 2 of 15

Revision history

Author(s) Description Date

Stephanie Kristin
Schröder (LUH)

Draft deliverable

16.09.2024

Tjaša Stare
(BioSis) Revision 1 23.09.2024

Stephanie Kristin
Schröder (LUH) Version 2 23.09.2024

Tjaša Stare
(BioSis) Revision 2 24.09.2024

Stephanie Kristin
Schröder (LUH) Version 3 25.09.2024

Anna Ziemele
(accelCH) Formatting and formal check 27.09.2024

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 3 of 15

Contents
Revision history ... 2
Contents .. 3
Partner short names .. 4
Abbreviations .. 4
Executive summary ... 5
1 Introduction ... 6
2 Requirements ... 6
3 Choice of Codecs .. 6

3.1 VVenC Video Compression .. 7
3.2 HEIF Image Compression ... 7
3.3 Zstandard Compression ... 7

4 Installation Guide ... 7
4.1 System Requirements and Recommendations .. 7
4.2 Installation with Anaconda .. 8

4.2.1 Clone the Repository ... 8
4.2.2 Create and Activate the Conda Environment .. 8
4.2.3 Build VVenC ... 8
4.2.4 Install FFmpeg .. 8

4.3 Installation without Anaconda ... 8
4.3.1 Clone the Repository ... 9
4.3.2 Create and Activate the Virtual Environment ... 9
4.3.3 Install Required Packages .. 9
4.3.4 Build VVenC ... 9
4.3.5 Install FFmpeg .. 9

5 Usage Guide ... 10
5.1 Usage Examples ... 10
5.2 Verification ... 10
5.3 Supported File Types .. 11

6 Code Structure ... 11
6.1 Detailed Module Description ... 11

6.1.1 Video Codec ... 11
6.1.2 Image Codec .. 11
6.1.3 Zstandard Codec .. 12

6.2 Configuration ... 12
6.2.1 Video Compression Presets ... 12
6.2.2 Video Decompression Preset... 13

6.3 Documentation .. 13
7 Performance ... 14
8 Future work .. 14
9 References.. 15

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 4 of 15

Partner short names

No. Organisation Short name

1 BioSistemika BioSis

2 Gottfried Wilhelm Leibniz Universität Hannover LUH

3 Imagene SA IMG

4 Technische Hochschule Wildau THWi

5 Haute École Specialisée de Suisse Occidentale HES-SO

6 accelopment Schweiz AG accelCH

Abbreviations

Abbreviation Term

AVC Advanced Video Coding

CRA Clean Random Access

EC European Commission

EU European Union

FFmpeg Fast Forward Moving Picture Experts Group

GOP Group of Pictures

HDR High Dynamic Range

HEIF High Efficiency Image Format

HEIF High Efficiency Image File Format

HEU Horizon Europe

HEVC High Efficiency Video Coding

QP Quantization Parameter

QPA Perceptual QP Adaption

SDR Standard Dynamic Range

VVC Versatile Video Coding

VVenC Versatile Video Encoder

WP Work Package

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 5 of 15

Executive summary

Background

Deliverable D1.1 is part of work package 1 (WP1), which focuses on developing a data preparation
system. D1.1 describes the development of a compression module that can reduce the amount of DNA
that needs to be synthesized.

Objectives

One of the objectives of the PEARL-DNA project is to develop a compression module that can target
specific data types (e.g., videos and images) and efficiently process generic data. This document will
describe how the compression module was developed, including the integration of state-of-the-art
compression solutions to form a lossless compression solution for generic data and a lossy
compression solution targeting specific data types.

Methodology and implementation

The main methodology in developing the compression module integrates state-of-the-art compression
solutions to form a lossless compression solution for generic data and a lossy compression solution
targeting specific data types. The implementation proceeds in two phases: initially creating the lossless
compression solution, followed by the development of the lossy solution tailored to specific data types.
Finally, both compression solutions are merged into an adaptable PEARL-DNA compression codec.

Outcomes

The key findings of this deliverable are the development of a compression module that can target
specific data types and efficiently process generic data and the integration of state-of-the-art
compression solutions to form a lossless compression solution for generic data and a lossy
compression solution targeting specific data types.

Impact

The expected impact of this deliverable is the reduction of the amount of DNA that needs to be
synthesized by optimizing the process of DNA synthesis and making the process more cost efficient.
Overall, this will contribute to the final goal of the PEARL-DNA project to develop a novel DNA-based
digital data storage system.

Next steps

The next step is the development of the PEARL-DNA channel codec (D1.4), an error detection and
correction (EDC) module that protects the stored data at multiple tiers.

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 6 of 15

1 Introduction

The PEARL-DNA Compression Codec is a critical component of the PEARL-DNA project. The codec is
designed to reduce the amount of DNA that needs to be synthesized by compressing data using state-
of-the-art compression solutions. The compression module is part of WP1, which focuses on
developing a data preparation system.

The PEARL-DNA Compression Codec is designed to be adaptable, capable of targeting specific data
types such as video and images, and efficiently processing generic data. It has been tested on various
file types, including text, images, and videos. The compression and decompression statistics are
provided in Table 2, which shows the compression time, decompression time, original size,
compressed size, memory usage, and PSNR values for each file type.

2 Requirements

The compression codec is a critical component of the project, and its requirements are multifaceted.
Firstly, it is expected to be adaptable, capable of targeting specific data types such as images and
videos, and efficiently processing generic data. The codec should provide lossless compression,
reducing and optimally eliminating all redundant information contained in the input data. This is crucial
for maintaining data integrity and ensuring the compressed data can be accurately restored to its
original form. Additionally, the codec should offer lossy compression on target file types, which
includes reducing irrelevant data and allowing for a trade-off between data quality and compression
ratio. The compression codec should be able to shift priority towards specific dimensions depending
on the specific usage scenario, ensuring that it can be optimized for different applications and use
cases. Furthermore, the codec should be designed to work seamlessly with other project components,
such as the error-correction functionality and the data-to-DNA encoding module, to ensure a cohesive
and efficient data storage and retrieval system.

Compared to de-facto standard compression methods such as ZIP, the PEARL-DNA Compression Codec
offers several distinct advantages. While traditional formats apply a generic approach to compression,
the PEARL-DNA codec is specialized and adaptable to the type of data being processed, such as video
and image files. It utilizes advanced tools like VVenC for lossy video compression and Pillow for images
while leveraging Zstandard (Zstd) for lossless compression of generic data. This allows it to eliminate
redundant data with precision for lossless needs and strike a balance between compression ratio and
data quality for lossy scenarios. Moreover, the codec is designed to integrate smoothly with critical
project components like error correction, making it an efficient and versatile solution compared to
more limited, general-purpose formats like RAR and ZIP.

3 Choice of Codecs

The PEARL-DNA Compression Codec uses VVenC [1] for lossy video compression, Pillow [2] for lossy
image compression in the High-Efficiency Image File Format (HEIF), and Zstandard (Zstd) [3] for lossless
compression of other data types (Table 1). Other video file types can be compressed by converting
them into YUV format before compression.

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 7 of 15

Table 1: Codec and supported file types

File type Supported file types Codec

Video YUV (.yuv) VVenC

Image PNG (.png), JPEG (.jpg, .jpeg) HEIF

Other all other file types Zstandard

3.1 VVenC Video Compression

Selecting a suitable video compression codec is crucial for efficient video content storage and
transmission. VVenC is an implementation of the Versatile Video Coding (VVC) [4] standard. In this
context, VVenC video compression offers a compelling solution. Published in 2020, VVC is the successor
to AVC (2004) and HEVC (2013) [5], making it a state-of-the-art video codec. With its high compression
ratio of 150:1 to 1000:1, VVenC is well-suited for applications with limited storage space. The codec's
ability to discard non-essential data during compression significantly reduces file size, making it an
attractive option for video applications where visual quality is paramount. Furthermore, VVenC's
enhanced motion vector prediction, greater partitioning flexibility, and improved intra-prediction
enable a reduction of bit rate by approximately 50% over HEVC at the same quality level. [4]

3.2 HEIF Image Compression

For image compression, the High Efficiency Image Format (HEIF), which utilizes the High Efficiency
Video Coding (HEVC) [5] standard for encoding, presents a viable alternative to traditional image
formats. First published in 2015, HEIF offers a lossy compression with a high compression ratio of 20:1
to 40:1, and up to 100:1. This results in significantly smaller file sizes compared to JPEG, making HEIF
an ideal choice for applications where image storage space is a concern, such as mobile devices or web
applications. Furthermore, HEIF's versatility in supporting a wide range of image types, including
photographs and graphics, adds to its appeal. With its ability to achieve approximately 50% better
compression than JPEG, HEIF is an attractive option for applications where image storage space is
limited. [5]

3.3 Zstandard Compression

Zstandard compression offers a robust solution for compressing generic files. Although not explicitly
mentioned in the project context, Zstandard's lossless compression capabilities make it a suitable
choice for applications where data integrity is crucial. Its fast compression and decompression speeds,
with compression speeds of several hundred MB/s and decompression speeds of over 1 GB/s on
modern hardware, make it an attractive option for applications where speed is critical, such as data
centers or cloud storage applications. [6]

4 Installation Guide

4.1 System Requirements and Recommendations

• Linux, macOS, or Windows operating system

• FFmpeg installed (see installation guide below)

• CMake installed (for building VVenC and FFmpeg on Linux)

• Python installed

• If you are using Windows, it is recommended to install the Windows Linux Subsystem (WSL)

• It is recommended to use Anaconda for the installation.

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 8 of 15

4.2 Installation with Anaconda

If you are using Linux, run the following command before continuing to update all packages:

• sudo apt update

4.2.1 Clone the Repository

Open a terminal or command prompt and navigate to the directory where you want to install the
module.

Run the following command to clone the repository and its submodules:

• git clone --recursive https://www.tnt.uni-hannover.de:3000/schroeder/PEARL-
DNA_compression-module.git

Navigate to the cloned repository directory:

• cd PEARL-DNA_compression-module

4.2.2 Create and Activate the Conda Environment

• conda env create -f environment.yml

• conda activate comp_codec

4.2.3 Build VVenC

Use this command to install CMake:

• conda install gcc gxx make cmake

Build VVenC with the following commands:

o cd external/vvenc/
o mkdir build
o cd build
o cmake..
o make

4.2.4 Install FFmpeg

Linux:

• cd external/ffmpeg

• ./configure --disable-x86asm

• make -j

macOS (using Homebrew):

• /bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

• brew install ffmpeg

Windows:

• winget install ffmpeg

4.3 Installation without Anaconda

If you are using Linux, run the following command before continuing to update all packages

• sudo apt update

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 9 of 15

4.3.1 Clone the Repository

Open a terminal or command prompt and navigate to the directory where you want to install the
module.

Run the following command to clone the repository and its submodules:

• git clone --recursive https://www.tnt.uni-hannover.de:3000/schroeder/PEARL-
DNA_compression-module.git

Navigate to the cloned repository directory:

• cd PEARL-DNA_compression-module

4.3.2 Create and Activate the Virtual Environment

Run the following command to create and activate the virtual environment:

• Linux:
o sudo apt install python3-venv
o python3 -m venv .venv
o source .venv/bin/activate

• macOs:
o python3 -m venv .venv
o source .venv/bin/activate

• Windows
o python -m venv .venv
o .venv\Scripts\activate

4.3.3 Install Required Packages

Run the following command to install the required packages:

• pip3 install -r requirements.txt

4.3.4 Build VVenC

Linux:

• sudo apt install cmake

• sudo apt install build-essential

macOS (using Homebrew):

• brew install cmake

Windows: Download the installer from the official CMake website

Build VVenC with the following commands:

o cd external/vvenc/
o mkdir build
o cd build
o cmake..
o make

4.3.5 Install FFmpeg

Linux:

• cd external/ffmpeg

• ./configure –disable-x86asm

• make -j

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 10 of 15

macOS (using Homebrew):

• /bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

• brew install ffmpeg

Windows:

• winget install ffmpeg

5 Usage Guide

The PEARL-DNA Compression Module can be used to compress and decompress files using the
following commands:

• Compression: python3 main.py -i <input_file> -o <output_file> [-p <preset>]

o <input_file>: input file to be compressed

o <output_file>: output file after compression

o <preset>: preset only for video compression (slow, medium, fast)

• Decompression: python3 main.py -d -i <input_file> -o <output_file>

o <input_file>: input file to be decompressed

o <output_file>: output file after decompression

5.1 Usage Examples

• Compress a video file using the "fast" preset:
o python3 main.py -i test_files/video.yuv -o test_files/video.yuv.hevc -p fast

• Compress an image file:
o python3 main.py -i test_files/image.png -o test_files/image.png.heif

• Compress a text file:
o python3 main.py -i test_files/text.txt -o test_files/text.txt.zst

• Decompress a video file:
o python3 main.py -d -i test_files/video.yuv.hevc -o test_files/video.yuv.hevc.yuv

• Decompress an image file:
o python3 main.py -d -i test_files/image.png.heif -o test_files/image.png.heif.png

• Decompress a text file:
o python3 main.py -d -i test_files/text.txt.zst -o test_files/text.txt.zst.txt

5.2 Verification

To verify the result of lossless compression (Zstandard), use the following command:

• diff <original_file> <decompressed_file>

The results of the lossy compression of videos (VVenC) can be evaluated in the following ways:

• PSNR: A PSNR value exceeding 38 dB is considered to have good quality with minor
degradation that is typically imperceptible to the human eye. The PSNR is automatically
displayed during the video compression.

• Visual inspection: A visual inspection is a good way to assess subjective quality. Look for
common artifacts such as blocking, blurring, ringing, or banding.

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 11 of 15

The results of the lossy compression of images (HEIF) can be evaluated in the following ways:

• PSNR: A PSNR value exceeding 38 dB is considered to have good quality with minor
degradation that is typically imperceptible to the human eye. The PSNR for images is not
automatically calculated during the compression.

• Visual inspection: A visual inspection is a good way to assess subjective quality. Look for
common artifacts such as blocking, blurring, ringing, or banding.

5.3 Supported File Types

• Uncompressed:
o Video: YUV (.yuv)
o Image: PNG (.png), JPEG (.jpg,.jpeg)
o Other: all other file types

• Compressed:
o Video: HEVC (.hevc)
o Image: HEIF (.heif)
o Other: Zstandard (.zstd)

6 Code Structure

6.1 Detailed Module Description

6.1.1 Video Codec

This module is designed to handle both video compression and decompression using VVenC for
compression and FFmpeg [4] for decompression, incorporating customizable preset configurations
from YAML files. The primary functionality revolves around two main operations: compressing a video
file and decompressing it back to its original format.

The vvc_compress function facilitates the compression of a video file. It accepts three parameters: the
input file path, the output file path, and a preset that defines the compression settings. The available
presets are "slow," "medium," and "fast," each of which corresponds to a different YAML configuration
file stored in the project’s directory. The selected preset’s settings are loaded dynamically from YAML
files, which specify compression parameters like size, frame rate, bitrate, and more. Once loaded, the
compression process is triggered using VVenC, a video encoder designed for high-efficiency video
coding (HEVC).

The vvc_decompress function performs video decompression. It accepts an input video file and an
output path, applies decompression settings from a predefined YAML configuration, and generates a
decompressed output file. The decompression process is handled using FFmpeg.

Two helper functions support these core functions, _exec_vvenc_compression and
_exec_ffmpeg_decompression. These handle the execution of the video compression and
decompression commands using subprocesses, ensuring that the appropriate parameters are passed
based on the preset configurations. Both functions raise an exception if the subprocess fails, allowing
for error handling and debugging.

Key advantages of this module include its flexibility through YAML-based configuration, which allows
users to easily modify or extend compression and decompression presets.

6.1.2 Image Codec

This Python module uses the Pillow library and the pillow_heif extension to compress and decompress
image files in the High Efficiency Image File Format (HEIF). It comprises two primary functions:

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 12 of 15

heif_compress to compress images into HEIF format and heif_decompress to revert HEIF files back to
standard image formats.

The heif_compress function is designed to take a standard image file, compress it into the HEIF format
using the highest quality settings, and then save the compressed file. It accepts two parameters:
input_path, the file path of the source image, and output_path, the destination file path for the
compressed image. The function opens the source image, converts it to HEIF format, saves it to the
specified output path, and then confirms the operation's success with a printed message detailing the
input and output paths.

The heif_decompress function decompresses HEIF images back into their original format. It also
requires two parameters: input_path, where the compressed HEIF image is located, and output_path,
where the decompressed image will be saved. The function reads the HEIF file, converts it back to a
standard image format, saves it, and outputs a success message indicating the completion of the
process along with the file paths involved.

This module depends on Pillow for general image handling tasks and pillow_heif for specific HEIF file
manipulation. HEIF is particularly useful in environments where storage efficiency is essential—such
as mobile applications, image archives, or web platforms dealing with high-resolution images—due to
its ability to maintain high-quality images at roughly half the file size of equivalent JPEG images.

6.1.3 Zstandard Codec

This module provides functionality for compressing and decompressing files using the Zstandard
compression algorithm. Zstd is a modern, high-performance compression library known for its fast
compression speeds and high compression ratios, making it suitable for a variety of use cases where
both performance and space savings are essential.

The zstd_compress function compresses a file located at the specified input_path and saves the
compressed version to the output_path. This process begins by reading the file in binary mode and
ensuring all the contents are loaded into memory. The function then initializes a Zstandard compressor
using the ZstdCompressor object from the Zstandard library. The input data is compressed into a more
compact form and subsequently written to the output file, which is also opened in binary mode. A
success message is printed upon completion, indicating the original and compressed file paths.

The zstd_decompress function handles the inverse operation, decompressing a previously compressed
file. The function reads the input file in binary mode to load the compressed data into memory. It then
initializes a Zstandard decompressor using the ZstdDecompressor object, which performs the
decompression process. The decompressed data is written in its original form in the output file. Like
the compression function, a success message is printed once the decompression is completed.

6.2 Configuration

6.2.1 Video Compression Presets

The video compression configuration presets outline the three settings for video compression using
the VVenC encoder, specifically optimized for three different presets: faster, medium, and slower,
named fast, medium, and slow.

The video compression is performed on a video file with a resolution of 1920x1080, which represents
a Full HD format. The temporal rate of the input file is set at a high frame rate of 120 frames per second
(fps), with a frame scale of 1. However, a fractional framerate is defined as 60/1 for the final encoding,
resulting in a smooth 60 frames-per-second output.

The video format is YUV 4:2:0, which indicates that the color space used for the input is YUV with
chroma subsampling at 4:2:0, reducing the color information to save bandwidth and compression

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 13 of 15

space. This configuration also supports two variations of YUV 4:2:0: 8-bit and 10-bit, though the config
defaults to 8-bit unless specified otherwise.

The VVenC presets are critical to the configuration. They change across the three configurations
(faster, medium, and slower). These presets control the trade-off between compression speed and
efficiency. A faster preset prioritizes encoding speed over compression efficiency, while a slower preset
spends more time compressing the video to achieve better efficiency and potentially better visual
quality.

The quantization parameter (QP) is set to 32, which controls the level of compression. The higher the
value, the more compression is applied at the expense of video quality. In this case, 32 is a moderately
high compression level, balancing file size and quality. The bitrate and maxrate are set to 0, indicating
that no specific bit rate control is used, allowing for an unconstrained variable bit rate (VBR) approach.

There is an option for Perceptual QP Adaptation (QPA), enabled with a value of 1, meaning the encoder
adapts the QP values based on the perceptual importance of different parts of the frame, likely leading
to a better visual quality by preserving more detail where the viewer is likely to notice.

The refreshsec parameter is set to 1, meaning the intra-frame (or refresh frame) period occurs every
second. This is complemented by the refresh type set to CRA, indicating that open GOP (group of
pictures) structures are being used, where CRA (Clean Random Access) frames are used for intra-
refresh instead of IDR (Instantaneous Decoder Refresh) frames. This results in a balance between
efficient compression and the ability to seek randomly within the video. HDR and SDR modes are
disabled.

In summary, the main difference between the fast, medium, and slow configurations lies in the preset
value, which adjusts the encoding speed and efficiency. The faster preset will produce a quicker encode
with less computational load but may sacrifice compression quality. On the other hand, the slower
preset will result in a more refined compression process, potentially yielding higher video quality and
lower file size at the cost of encoding time.

6.2.2 Video Decompression Preset

The video decompression preset is tailored to FFmpeg and aims to preserve the highest quality during
the process. It employs an experimental mode to allow more flexible features, setting the compliance
level to "-2." This means it can handle less common formats or advanced options that might not be
fully standardized, offering greater adaptability in video processing.

The video is decoded using the "rawvideo" codec, which produces uncompressed video frames. By
opting for raw video, the configuration ensures that no additional compression is applied after
decompression, maintaining the original quality of the video content. This results in an output as close
as possible to the source material.

For the pixel format, "yuv420p" is chosen, a widely used format that balances quality and file size. In
this format, the luminance (brightness) data is stored at full resolution, while the chrominance (color)
data is subsampled, reducing the overall amount of color information. This efficient subsampling
method preserves a high level of visual quality, making it a standard in many video processing
workflows.

6.3 Documentation

The repository's documentation is focused on providing clear and concise instructions. It includes
Python docstrings that describe the purpose and usage of functions, detailing the expected arguments
and their types. The error handling in the code emphasizes robust and reliable usage patterns, ensuring
that users are informed about potential issues and how to handle them. Overall, the repository's
documentation aims for easy usability and maintainability by providing thorough explanations and

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 14 of 15

usage examples. Additionally, the README includes detailed installation and usage instructions, usage
examples, and statistical tests.

7 Performance

The performance of the compression codec varies significantly across different file types and presets.
For text files, the codec compresses a 479-byte file to 317 bytes in a brief 0.05 seconds and
decompresses almost as quickly, using minimal memory. Image compression shows more resource
intensity, compressing a 1 MB file to 375 kB in 0.47 seconds and decompressing in 0.22 seconds (Table
2).

Video compression performance is dependent on the preset used. The 'slow' preset achieves good
compression (from 890 MB to 1.8 MB) but takes significantly longer (over 32 minutes) than the other
presets. Therefore, it is more suitable for scenarios where compression time is less critical, but high
compression and high quality (PSNR of 39.7340) are essential. The 'medium' and 'fast' presets offer
quicker compression times. The 'medium' preset offers a slightly lower compression (from 890 MB to
1.9 MB) than the 'slow' preset but is significantly faster than the 'slow' preset (under 2 minutes). It also
results in slightly lower quality (PSNR of 39.6224). The 'fast' preset is particularly notable for its rapid
compression time of under 12 seconds and results in the highest compression (from 890 MB to 1.5
MB), though at the cost of a slight drop in quality (PSNR of 38.8153). These presets show a varying
demand for memory resources, highlighting the codec's adaptability to different processing and
storage capabilities (Table 2).

Table 2: Compression and decompression statistics

File
Type

Preset
Compression
Time

Decompression
Time

Original
Size

Compressed
Size

Memory
Compression

Memory
Decompression

PSNR

Text - 0.05s 0.04s 479 B 317 B 20 MB 19.7 MB -

Excel - 1.92s 0.06s 14 kB 3.3 kB 23 MB 21.5 MB -

PDF - 0.06s 0.04s 2.3 MB 2.2 MB 27.5 MB 26.3 MB -

Image - 0.47s 0.22s 1 MB 375 kB 76.31 MB 29.53 MB -

Video slow 1924.86s 2.05s 890 MB 1.8 MB 2.26 GB 838.09 MB 39.7340

Video medium 108.29s 1.94s 890 MB 1.9 MB 2.21 GB 788.91 MB 39.6224

Video fast 11.72s 1.90s 890 MB 1.5 MB 1.85 GB 886.73 MB 38.8153

8 Future work

After the development of the compression codec, future work in WP1 will focus on developing the
PEARL-DNA channel codec (D1.4), an error detection and correction (EDC) module, and a storage
format module. The EDC module will protect the stored data at multiple tiers, including a dynamic
global error correction code, a dynamic regional error correction code, and a static local error
detection scheme.

Deliverable No. D1.1
Version 1.0
Project No. 101115115

Title
PEARL-DNA compression codec

Page 15 of 15

9 References

[1] "VVenC," [Online]. Available: https://github.com/fraunhoferhhi/vvenc. [Accessed 13 09 2024].

[2] "Pillow," [Online]. Available: https://pillow.readthedocs.io/en/stable/. [Accessed 13 09 2024].

[3] "Zstandard," [Online]. Available: https://github.com/facebook/zstd. [Accessed 13 09 2024].

[4] "ITU-T H.266: Versatile video coding," 2020. [Online]. Available: https://www.itu.int/ITU-
T/recommendations/rec.aspx?id=15648&lang=en.

[5] "ITU-T H.265: High efficiency video coding," 2013. [Online]. Available: https://www.itu.int/itu-
t/recommendations/rec.aspx?rec=14107.

[6] "VVenC wiki," [Online]. Available: https://github.com/fraunhoferhhi/vvenc/wiki. [Accessed 14 09
2024].

[7] "High Efficiency Image File Format (HEIF)," [Online]. Available: https://nokiatech.github.io/heif/.
[Accessed 13 09 2024].

[8] "Zstandard," [Online]. Available: http://facebook.github.io/zstd/. [Accessed 15 09 2024].

[9] "FFmpeg," [Online]. Available: https://www.ffmpeg.org/. [Accessed 13 09 2024].

